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Abstract

The shape and amplitude of the bathymetric lidar waveforms (the recorded time history of the reflected lidar pulses) contain information about
the attenuation of the water and the bottom reflectivity in the survey area. This study considers the factors that affect the amplitude of the bottom
return and examines the use of the amplitude of the bottom return to distinguishing between different bottom types. The amplitude of the bottom
return was corrected for pulse stretching and retro-reflectance due to the bottom slope based on a simple lidar radiative transfer model before the
examination. Within-flightline and between-flightline variations of the bottom return were considered, both of which are related to the attenuation
of water, surface wave condition, and bottom reflectivity. The major concern of within-flightline variation is the effect of surface waves on the
reliability of bottom return. Between-flightline variation concerns the effect of change in viewing orientation on the bottom return from the same
bottom type. A data set of Egmont Key, Florida, assuming homogeneous water clarity, was chosen to investigate the latter two effects on the
bottom return signals. The result shows that the presence of surface waves is the most impeding factor that complicates the use of bottom return
signal, as it can exaggerate the value (not prominent in our data) and variance of the amplitude of bottom return. A map of sand, continuous
seagrass, and discontinuous seagrass ranging from the depth of 0.8 to 4.3 m was produced correctly from a single lidar flightline with limited in-
situ information, in this case, a nadir viewing videotape concurrent with lidar survey mission. Finally, suggestions are proposed for ways to
improve the production of a bottom map using the lidar waveform data.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Mapping of bottom types in near coastal waters has a number
of important applications including modeling sediment trans-
port, mapping and management of fish habitat, and coral reef
monitoring. Sediment transport is strongly affected by bottom
type and bottom roughness. For example, underwater biota can
dominate hydraulic roughness and have the potential to cause
spatial and temporal disturbance of the sediment (Wright et al.,
1997). An improved understanding of the bottom properties
would also benefit the management of coastal areas. Locating
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essential fish habitat features, such as roughness, slope,
vegetation, etc., would help efforts to manage and sustain the
natural resources financially and ecologically (von Szalay &
McConnaughey, 2002). Bottom type mapping would also be
useful for monitoring the change of the size of healthy coral reef
habitat area. This is particularly important given the hypothesis
that the high seawater temperature, caused by global warming,
leads to coral reef bleaching (Glynn, 1991). Mapping the bot-
tom types with remote sensing would make more frequent
revisits feasible and is potentially more cost effective than field
data collection.

Passive, optical imaging systems have been applied to the
depth and bottom type applications in various geographic and
geologic areas (Bagheri et al., 1998; Mobley et al., 2005). These
systems have the advantage of being able to cover large areas in
a short time, but are difficult to calibrate, very limited in the
range of detectable depths, and are typically limited by the

mailto:chikuei@mail.ncku.edu.tw
http://dx.doi.org/10.1016/j.rse.2006.08.003


Fig. 1. Generic bathymetric lidar waveform.
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depth of penetration and the accuracy of the bathymetry derived
from the spectral imagery. The accuracy of depth determination
with passive optical systems is limited in part by the inherent
sensitivity of the systems and in part by the sensitivity of the
observations to changes in water optical properties (Kohler,
2001). Nonetheless, passive, hyperspectral imaging systems
have potential for delineating bottom types when the spectral
reflectance of different bottom types is sufficiently distinct
(Hochberg & Atkinson, 2000; Tsai & Philpot, 2002).

Another possibility is to use the amplitude of the bottom
return from an Airborne Lidar Bathymetry (ALB) system as an
indicator of the bottom type. ALB is designed to measure the
depth of the water based on the two-way travel time of a short
pulse of light between the water surface and the bottom. An
advantage of the lidar system is that it is capable of measuring
the water depth from 1.5 m down to 60 m, depending on the
water clarity (Abbot et al., 1996; Guenther et al., 2000; Steinvall
et al., 1994). The depth limit is often described as being two to
three times the Secchi depth. This is far superior to the depth
penetration of passive optical systems which are generally
limited to no better than 1.5 Secchi depths.

Bathymetric lidar systems use lasers that emit a short green
pulse in order to maximize penetration in water for a wide range
of water types. At longer wavelengths water absorption in-
creases very significantly. At shorter wavelengths, scattering
and absorption by substances in the water increase rapidly,
decreasing the penetration depth. Obviously, since lidar is a
monochromatic system, it can only provide a monochromic
map of bottom reflectance. This is the primary drawback for the
lidar systems because only one variable can be used to char-
acterize the bottom, and is in stark contrast to passive imaging
systems, especially hyperspectral sensors, that can use spectral
information to assess the bottom type in optically shallow
waters. This suggests that a combination of lidar and passive
imaging systems may well be optimal for bottom classification
(Bissett et al., 2005; Wright & Brock, 2002). However, here we
are concerned with the use of lidar data alone.

In order to detect both the surface and the bottom, and to
determine the distance between them, the entire time history of
the lidar return signal through the water path (the waveform)
must be recorded. This waveform contains information about
both the change in water transmission with depth and bottom
reflectance. Not all lidar systems save the full waveform for
subsequent analysis and verification. This study takes advan-
tage of a wealth of data stored from survey missions by the
Scanzning Hydrographic Operational Airborne Lidar Survey
(SHOALS) that stores the entire resulting waveform for each
laser pulse and uses these data to characterize the bottom
material and to detect the associated variations in the survey
area.

A generic bathymetric lidar waveform is shown in Fig. 1. The
waveform can be viewed as three parts: the water surface return,
the water volume backscattering, and the bottom return. The
surface return is the first and usually the strongest component of
the return. It can be quite variable, however, as it depends on the
roughness of the water surface and can disappear entirely due to
specular reflection when the water surface is flat calm. Volume
backscattering by the water begins as the pulse enters the water,
and increases until the pulse is entirely within the water. The
water volume backscattering attenuates exponentially with
respect to the product of depth and the water diffuse attenuation
coefficient once the whole pulse is submerged in the water. As
seen in Fig. 1, the bottom return is the last signal that arrives at
the sensor. Losses at the air–water interface and the specific
attenuation rate of the water will affect the amplitude and shape
of the bottom return.

The amplitude of the bottom return from a bathymetric lidar
contains information about the reflectance of the bottom cover
at the lidar wavelength. However, there are a number of other
factors that can also have a significant effect on the amplitude of
the bottom return. Some of these factors are quite predictable
and relatively easily accounted for. These would include the
effects of the depth, water attenuation, and the pulse stretching
that result when the bottom slopes relative to the incident angle
of the lidar. Others, typically environmental in nature, may be
identified easily enough, but are much more difficult to account
for. Wave double focusing effect (see Section 3.1), for example,
can both amplify and introduce substantial variability in the
amplitude of the bottom return.

In this research, the potential of using a lidar system to
discriminate different bottom types is evaluated by examining
the data set collected at Egmont Key, Florida. Although the data
are obtained from one particular lidar system, the basic principle
can be applied to other systems. The data set from Egmont Key
provides a simple scenario that consists of two bottommaterials,
seagrass and sand, in relatively turbid waters. With the as-
sumption of homogenous water clarity throughout the survey
area, the simple conditions at Egmont Key provide insight into
the environmental effects on the bottom return signal.

2. Materials and methods

2.1. The SHOALS system

The version of the SHOALS system used in this study em-
ployed a scanning, pulsed Nd:YAG laser transmitter capable of
emission at both the fundamental wavelength of 1064 nm
(infrared) and the frequency-doubled wavelength of 532 nm
(green) with a ∼6 ns pulse width and a pulse repetition rate of
400 Hz. The output power of the laser is 15 mJ (1064 nm) and
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5 mJ (532 nm). The received signals are digitized into 1 ns bins
and the entire resulting waveform for each pulse is stored. The
SHOALS scan pattern describes an arc ahead of aircraft with the
center of the beam held at a constant nadir angle (the angle
between the vector of receiver or transmitter and normal vector
of the surface, c.f. θ in Fig. 2) of 20° (Irish & Lillycrop, 1999).
The diameter of the laser footprint on the water surface is
maintained at approximately 2.4 m regardless of the altitude of
the aircraft (Sosebee, 2001).

The SHOALS system is typically operated at an altitude of
200 m and a speed of 60 m/s, which corresponds to a survey
swath and horizontal spot density of 110 m and 4 m (Irish &
Lillycrop, 1999). The position of each lidar sounding is deter-
mined using a combination of the inertial navigation system and
the global positioning system.

2.2. Basic models and concepts

Although SHOALS does not explicitly use the amplitude
information of the bottom return to retrieve the depth (Guenther
et al., 1996), the amplitude information is still stored in the data
as part of the waveform. The amplitude of the bottom return is
obtained by subtracting the extended exponential curve of the
volume backscattering return to the time bin of the peak value of
the bottom return from the lidar waveform (Guenther, 2001).
This amplitude, however, is a function of a number of factors
(depth, water clarity, bottom slope, etc.), not just the bottom
reflectance. In order to better understand and characterize these
effects, it is useful to model the process using a simple lidar
radiative transfer model.
Fig. 2. Schematic diagram showing the refraction of an incident light beam
passing from air through water and reflecting from the sea bottom. The nadir
angle is defined by θ.
The laser pulse transmitted from the lidar system through the
water and reflected back from the ocean bottom to the receiver
is attenuated exponentially with depth. Since the nadir angle and
the altitude are well maintained during the survey mission, and
all the system loss terms are well controlled, we use a simple
mathematical description of the process (Guenther, 1985):

PR ¼ PTWqexpð−2ksysDÞ ð1Þ
where PR is the received power [watts], PT is the transmitted
power [watts],W combines all the system factors and is taken as
a constant [steradians], ρ is the irradiance reflectance of the
bottom [steradian−1], ksys is the attenuation coefficient specific
for the lidar system and the water type [m−1], and D is bottom
depth [m], positive downward from the water surface. The
system term, W, actually includes the expression (D+H) where
H is the altitude of the aircraft, but since the lidar is always at the
altitude HN200 m and the bottom depths considered in this
paper are always relatively shallow,Db13 m, the effect of depth
on W is negligible. Taking the natural log of Eq. (1) yields:

lnðPRÞ ¼ lnðPTW Þ þ lnðqÞ−2ksysD ð2Þ
From this equation, it is clear that if the losses of the lidar system
in W are all well controlled and the transmitted power is
constant, the natural log of the return signal, ln(PR), is a linear
function of the natural log of the reflectance of the bottom, ln(ρ),
and the system attenuation length, ksysD. In an area for which
the system attenuation coefficient, ksys, is constant, bottom
types with distinct reflectance will then describe parallel lines in
a plot of ln(PR) versus D. Hence, the accuracy of detecting
bottom material change will be dependent on the accuracy of the
depth estimate and the uncertainty in the system attenuation
coefficient.
2.3. Data correction procedures

In this study we assume that the water is optically homo-
geneous over each study area and therefore will not address
corrections for the system attenuation here. There are,
however, several other factors which will affect the amplitude
of the bottom return that cannot be generally assumed to be
negligible, even locally. The most important of these is a
correction for the relative slope of the bottom as it relates to
the Bi-directional Reflectance Distribution Function (BRDF)
(Haner et al., 1998). There is an additional effect associated
with the relative slope – pulse stretching – that will lower the
apparent reflectance.

2.3.1. Correction for bottom reflectance using laboratory
measurements

The bottom slope affects the bottom return since reflectance
is a function of illumination and viewing angle, in addition to
material type. The general relationship is described by the
BRDF (Haner et al., 1998). In the absence of measured BRDF
values for the bottom types considered here, it is common to
assume that the surfaces are Lambertian. This assumption may
generally be realistic for flat sand bottoms (Mobley, 1994) but is



Fig. 3. Comparison of the retro-reflectance measurement of the 50% diffusively
reflecting Spectralon and the theoretical vales of Lambertian surface. The points
are the measured data. The solid line is the linear regression of the data points.
The dash line is the theoretical value of a Lambertian surface (Eq. (3)). The
values are normalized to the value at 0°, respectively, where the normal of the
material surface is parallel to the illuminating light. θi is defined in Fig. 2.
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likely to be less than ideal for other cases and may be ques-
tionable even for sandy bottoms for reflectance of lidar signals.

For a given bottom reflectance, the bottom return from a
perfectly diffuse (Lambertian) surface, will be a maximum for a
surface that is perpendicular to the direction of incidence and,
for purely geometric reasons, can be expected to decrease as the
cosine of the relative slope. The Lambertian surface is defined
as (Mobley, 1994):

r hi;/iYhr;/rð Þ ¼ q
p
coshi; ð3Þ

where r is the radiance reflectance,θ and ϕ are the nadir angle
and azimuth angle (the angle between the projection of the
receiver and transmitter on the surface and any defined forward
vector, positive counterclockwise) in spherical coordinates, and
i and r denote the incident and reflected light, respectively. θi is
shown in Fig. 2. Thus the apparent reflectance will be
dependent on the relative slope of the bottom and the laser
illuminating direction.

ALBs are almost always built in a monostatic configuration,
which means the transmitter and the receiver are aligned and
share an overlapping field of view (FOV). Frequently the
transmission and detection optics are located coaxially. In this
case, the bottom return signal results from retro-reflectance, i.e.,
light reflected back to the sensor in exactly the reverse direction
of the incident light. There is substantial documentation (Hapke,
1993; Meister et al., 2001) of the reflectance being significantly
higher in this direction due to an absence of shadowing. This
phenomenon is called the “hot spot” in remote sensing image
processing (Hapke, 1993; Meister et al., 2001). However, due to
the lack of data of the BRDF of real world materials (Voss et al.,
2000), especially with the retro-reflectance measurement, the
“hot spot” effect is modeled using data from a laboratory mea-
surement and used as a first order correction for the effect due to
slope orientations.

In order to make an initial estimate of the correction, we
begin with the assumption that all the bottom materials are
equally diffusive materials at the wavelength of 532 nm with a
BRDF similar to that of a 50% reflectance standard, Spectralon
(Labsphere, Inc.). The light source was a tungsten halogen light
source (LS-1) from Ocean Optics, Inc. The LS-1 emits a
continuous spectrum from ultra-violet to infrared, but only the
data of the wavelength of 532 nm was analyzed. The retro-
reflectance probe (Ocean Optics Inc.) was used to simulate the
transmitter and receiver configuration of a lidar system. It is a
tight bundle of seven optical fibers in a stainless steel ferrule
with six fibers surrounding one fiber in the middle. The il-
lumination is provided by the six outer fibers and the reflected
radiation is viewed through the central fiber. The result of the
retro-reflectance of the 50% diffuse reflecting Spectralon and
the theoretical radiance reflectance of Lambertian surface based
on Eq. (3) are shown in Fig. 3. The values are normalized to the
value at 0° (nadir looking). The result of the measurement
shows a linear relationship of reflectance with the nadir angle:

f ðhiÞ ¼ −0:0123hi þ 1:086; 0- Vjhijb90-; ð4Þ
where θi is the same as that used in Eq. (3). Specifically, θi is
the lidar incident angle in the plane of incidence defined by the
laser beam and the bottom normal vector (Fig. 2). With oblique
laser incidence, the positive direction is set when the bottom
normal vector tilts away from the lidar.

2.3.2. Correction for pulse stretching
Another effect of the bottom slope that requires a correction

procedure is pulse stretching. The energy in the bottom return is
a function of time. When the pulse is reflected from a surface
that is perpendicular to the viewing angle, the pulse will be in its
most compressed form. As the reflecting surface is tilted away
from the viewing angle, the pulse will be reflected first from the
portion of the surface closest to the source and then from
portions of the surface farther from the source. The reflected
energy is then distributed over a longer time than the incident
energy and the maximum return per unit time is reduced. Since
the maximum return is used as the measure of the bottom
reflectance, the pulse stretching effect will reduce the apparent
reflectance. An analytical simulation has demonstrated the
bottom slope effect on bottom pulse stretching (Steinvall &
Koppari, 1996; Steinvall et al., 1994). Rather than try to base the
correction on strictly geometric arguments, we use the ana-
lytical predictions of Steinvall and Koppari (1996). The results
of the modeling, shown in Fig. 4, illustrate the relationship
between the lidar incident angle on the bottom (i.e., nadir angle
θi) and the correction coefficients. Since only the range from
−40° to 40° is reported, an extrapolation is used to obtain
correction coefficients outside of this range. The relationship is:

gðhiÞ ¼ 0:9651expð0:0457hiÞ; −90- bhiV0-
1:0021expð−0:0359hiÞ; 0- Vhib90-

�
ð5Þ

The lidar incident angle on the bottom is required for both
the slope correction and the pulse stretch correction. Since we
have the bathymetry both for the point in question and several
adjacent points, the local bottom slope is calculated by



Fig. 4. The relationship between lidar incident angle and bottom pulse peak
amplitude. The triangle and square markers show the situations when the bottom
is toward and away from lidar, respectively. The solid and dash lines are the
exponential regressions of associated data points. θi is defined in Fig. 2.
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determining the normal of the facet consisting of the sounding
for the target point and the nearest two soundings in the forward
direction. The lidar incident angle is computed as the arc cosine
of the dot product of the normal and the source vector.

The slope correction procedure consists of three steps:

1) Compute an estimate of the slope based on ALB depth
measurements of adjacent points and the lidar incident angle
on the bottom.

2) Correct for the retro-reflectance based on the simple labo-
ratory observations at nadir-viewing, i.e., θi =0.

3) Correct for the pulse stretching based on the analytical
simulation of Steinvall and Koppari (1996) for nadir-
viewing, i.e., θi =0.

Essentially, Eq. (1) is now modified by the inclusion of two
terms, f (θi) (Eq. (4)) and g(θi) (Eq. (5)):

PR ¼ PTWqf ðhiÞgðhiÞexpð−2ksysDÞ: ð6Þ
Rearranging Eq. (6), taking the natural log of both sides, and

introducing a new notation, PR′ we have

ln PRVð Þ ¼ ln
PR

f ðhiÞgðhiÞ
� �

¼ ln PTWð Þ þ ln qð Þ−2ksysD: ð7Þ

Eq. (7), similar to Eq. (2), modifies the bottom return signal
in order to correct for the slope effects on the signal. These
corrections were applied to all data discussed below.

2.4. Data descriptions

This study is based on data taken from bathymetric mapping
missions flown at Egmont Key, Florida, which is an island
located outside of Tampa Bay between two navigational chan-
nels. The west shoreline of Egmont Key has changed sig-
nificantly over the past 100 years, but the shoreline on the east
side, near the study site, has changed little over that same period
of time (Kling, 1997). Also, as a barrier island, the east shore is
more protected from currents and storms in Gulf of Mexico. This
is significant because the data used for ground truth were not
collected simultaneously with the lidar bathymetry data and we
assume that the data are comparable in terms of the location of
changes in bottom type. The SHOALS data were acquired at an
altitude of 400mwith a swath width of 220m and transverse and
longitudinal sample spacing of 6 m and 8 m, respectively, on
May 15th, 2000. The surveyed area is between 27°33.71′N
and 27°38.05′N in latitude and between −82°50.56′E and
−82°44.76′E in longitude.

SHOALS was equipped with a nadir-looking color video
camera to visually record the water condition during each
survey flight (Irish & Lillycrop, 1999). The videotape provides
useful information of the surveyed area that was often needed to
evaluate the effect of environmental factors that might affect the
lidar signal return, such as white caps. However, the videotape
quality was often poor and, in extreme cases, sun glint from the
water surface saturated the camera. Also, the resolution of the
video image was not comparable to that of the lidar data.

Data from other institutions and agencies were used as
ground truth to supplement the videotape image. A National
Aerial Photography Program (NAPP) georeferenced image was
used as the primary reference map for Egmont Key area. It was
collected at an altitude of 6000 m above mean terrain on January
7, 1999. The spatial resolution of the NAPP photograph is 0.5 m.
A seagrass map acquired from the Florida Geographic Data
Library (FGDL) was also used to provide ground truth (Fig. 5).
The data represented on the map were collected by Florida
Marine Research Institute (FMRI) (FGDL, 2000). The limited
description of continuous and discontinuous seagrass in the
FMRI data was supplemented by personal communication with
researchers familiar with the area (Crewz, 2001; McRae, 2001;
White, 2001). According to their field observations, there are
three primarily seagrass species on the east coast of Egmont Key.
These are Halodule wrightii, Thalassia testudinum, and Syrin-
godium filiforme. The rest of the area on the east coast is sandy
bottom with shelly inclusions (Crewz, 2001).

The NAPP photo has served as the primary ground truth map
for Egmont Key because it has spatial detail that is superior to
the mission videotape and the FMRI seagrass map. Although
there was an approximate 17 month gap between the NAPP
photo mission and the lidar mission, with no intervening storms
(NOAA, 2000) the main bottom features defined by the seagrass
delineation had not changed substantially, judging from a
qualitative comparison with the mission videotape.

3. Results and discussion

In the ideal case (i.e., constant laser pulse power, no gravity
waves on the scale of the lidar footprint, a flat ocean bottom and
uniform water clarity), changes in the amplitude of the bottom
return would be due largely to differences in bottom type. This
section will focus on environmental effects on the bottom return
signal and the feasibility of distinguishing different bottom
types when the environmental effects cannot be ignored.

The effect of the environment can vary within a flightline
and also between flightlines. Within-flightline variations in-
clude wave effects in dispersing the lidar pulse as well as real



Fig. 5. Spatial distribution of seagrass at the east coast of Egmont Key, Florida. The square box corresponds to the area of Fig. 6.
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bottom variability. Between-flightline variations are largely a
matter of differences in the viewing direction of the SHOALS
sensor. These include wave effects, and bottom slope issues.

3.1. Within-flightline variations

3.1.1. Wave effects
Two flightline segments from Egmont Key, study sites 1 and

2 in Fig. 6, were selected for the analysis of the wave effects.
They were chosen so as to cover the largest possible depth range
within each flightline. These data are also selected only from the
edge of the flightlines heading south in order to minimize any
effects of changes in the viewing direction, a topic which will be
dealt with separately in Section 3.2. The bottom type within
both study sites is predominantly sand. (The FMRI data in-
dicates all sand, but small scattered dark patches in the mission
tape indicate the possibility of another bottom type.) The bottom
slope range in these areas is less than 5°. This provides a nearly
ideal situation with minimum bottom variation to examine the
wave effect on SHOALS data.

Scatter plots of the natural log of the corrected amplitude of
the bottom return versus depth using Eq. (7) for the study sites 1
and 2 are shown in Fig. 7. The expectation is that the data for a
single bottom type should describe a straight line in the scatter
plot as stated in Section 2.2. For both study sites the bottom type
is uniformly sand, and both scatter plots show the same trend,
but with a significant amount of variability about the line of
best-fit obtained from linear regression analysis (R2 =0.593 for
study site 1; R2 =0.622 for study site 2). Since it is the deviation
in y-intercept from this line that will be the main indicator of a
change in bottom type, it is important to consider the nature of
this variability when the bottom type is constant.

In order to examine the depth dependence of the variability,
the mean and standard deviation of the bottom return signals
from study sites 1 and 2 were calculated by binning the data in
0.5 m intervals except where there was insufficient data for a
meaningful result. The results are plotted in Fig. 7 and sum-
marized in Table 1.

As can be seen in both scatter plots, data points at shallower
depths are more dispersed than those at greater depths. It is
likely that this is due to double focusing, an effect due to the
presence of water surface waves and the fact that the transmitter
and the receiver are in a monostatic configuration. Double
focusing (also known as the aureole; Minnaert, 1993) is related
to the brightness pattern seen on the bottom of a pool when the
water surface is anything other than flat calm. The term double
focusing describes the fact that both the laser light and the FOV
of the receiver are focused by the water surface.

Double focusing has been described using a ray tracing
model (McLean & Freeman, 1996) and in analytical analysis
(Abrosimov & Luchinin, 1999; Luchinin, 1987). This phenom-
enon causes both the mean values and the variance of the lidar
bottom return signals in shallow regions to increase unevenly
with respect to the depth. The depth of shallow maximum is the
depth at which the maximum magnification of the received
signals occurs. Around that depth, the variance of the bottom
return signals also reaches its maximum value (Abrosimov &
Luchinin, 1999; Luchinin, 1987; McLean & Freeman, 1996).
The effect is a function of water wave geometry, which can be
related to wind speed. However, without direct observations of
the water surface or wind speed, the effect is not predictable.
The effect is only important in relatively shallow waters, i.e., at
depths of approximately 7 m or less. The depth of the maximum
fluctuation of the bottom return signal indicates the approximate
depth at which the laser beam is focused by the water surface
(McLean & Freeman, 1996). It should affect the trend in the
scatter plot by increasing the fluctuation near the focus depth
and increasing the amplitude of the bottom return near the same
depth by ∼20% (McLean & Freeman, 1996). However, the
scatter plot data do not exhibit the expected increase in the mean
amplitude corresponding with the increase in variance. The data
at the depth of 3 m to 4 m, where the largest fluctuations exist



Fig. 6. A map showing study sites at Egmont Key. The dot points are the lidar sounding data. The arrows near the bottom of the image indicate the flightline directions.
The depth contours are generated from SHOALS depth output. The data from the edge of the South-headed flightlines at study sites 1 and 2 and that at study sites 3 to 6
are used for the examination of within-flight variations. The overlap data at study sites 1, 2, and 6 are used for the examination of between-flightline variations.
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should be greater than those shown in Fig. 7. One explanation
for this discrepancy is that turbid water at Egmont Key tends to
increase scattering thereby masking the double focusing effect.

3.1.2. Bottom effects
At least part of the variability in bottom reflectance is due to

the inherent reflectance of different materials. This is precisely
the information that we would hope to use to delineate areas of
different bottom types. To consider this case, study site 3,
located along the eastern shore of Egmont Key, was selected
because it contains two distinctive bottom types, sand and
seagrass. Study site 3 is located near shore with water depth
from 0.8 m to 4.3 m. At this site the slope is gentle as can be
seen by the contours in the map of this area (Fig. 6).

Seagrass is substantially darker than sand at 532 nm, due
largely to absorption by photosynthetic pigments. Seagrass
reflectance is also more variable than sand for several reasons:
(1) the density of seagrass may vary significantly; (2) apparent
reflectance will depend on the substrate (sand, silt, etc.); (3)
seagrass reflectance may be altered by a covering of scum or
epiphyte (Smith, 2001).

As discussed in Section 2.2, if the difference in the amplitude
of the bottom return were only due to differences in the inherent
reflectance and the depth of the water, then each discrete bottom
type would align along parallel paths in a scatter plot. A scatter
plot of the data from study site 3 and the corresponding color-
coded map of the area are shown in Fig. 8. Assuming that the
change in bottom type is the dominant effect in Fig. 8a, the
cluster of samples known to be pure sand was used to compute a
best-fit straight line. Using the slope of this line as a guide, the
scatter plot was then divided into three parallel ranges that
would correspond to different bottom types. The three regions
were then color-coded and illustrated on the map of that data
(Fig. 8b). This procedure requires a knowledge of the in-situ



Fig. 7. Scatter plots of natural log of corrected bottom return versus water depth:
(a) study site 1, (b) study site 2. Only the data from the flightline flown toward
south is used. The dots are the lidar data. The squares are the means of lidar data
at 0.5 m interval. The error bars show one standard deviation range at 0.5 m
interval.

Table 1
Mean and variance of bottom return signal at study sites 1 and 2

Depth (m) 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Study site 1
Mean 8.50 8.38 8.19 7.98 n/a 6.96 6.66 n/a
Standard deviation 0.42 0.22 0.34 0.18 n/a 0.28 0.26 n/a

Averaged standard deviation:
0.28

Study site 2
Mean 7.85 8.59 8.28 7.98 7.81
Standard deviation 0.43 0.18 0.12 0.13 0.08

Averaged standard deviation:
0.19
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information provided in this case by the mission videotape. The
bounding box in Fig. 8a shows that the samples of pure sand
that are determined from the mission videotape were highly
reflective regardless of depth. The bounds of the three regions
were selected by trial and error in order to match the delineation
of seagrass shown in the mission videotape (not shown here).
Comparing the seagrass map acquired by FMRI (Fig. 5), the
mission videotape (not shown here), and the color-coded map of
study site 3 (Fig. 8b), it appears that both the continuous and
discontinuous seagrass beds are delineated by the one channel
(532 nm) lidar data. This is true even in the deeper waters where
the mission video is too poor to show any contrast.

The detailed structure within the discontinuous seagrass –
not delineated in the FMRI map – is also depicted in the color-
coded map of study site 3. In the scatter plot and the color-coded
map of study site 3, blue refers to dark seagrass and red to bright
seagrass. The dark seagrass area matches well with continuous
seagrass and the bright seagrass matches well with discontin-
uous seagrass in Fig. 5.

The scatter plot behavior seen in Fig. 8, is most easily
explained using the concept of a mixed sample. The ground area
illuminated by a single lidar pulse represents a single sample.
Seagrass is often locally inhomogeneous and, even at its most
dense, the substrate can often be seen when looking down
through the seagrass. Thus, the illuminated spot always contains
two materials, sand and seagrass. When the depth increases, less
sunlight gets to the bottom, resulting in a lower density of
seagrass. The apparent reflectance of seagrass pixel will increase
if sand is present in the pixel, and the proportion of the two
within a sample then determines the apparent reflectance of the
seagrass. This simplified model requires that the seagrass re-
flectance be the same for different life stages and at different
depths. The report of an experiment conducted in a nearby
location off Mullet Key, Florida (Fort Desoto Park) with sea-
grass species H. wrightii, the major seagrass species in Egmont
Key, draws two conclusions that are relevant to this research.
First, the chlorophyll a content per green area of seagrass does
not vary with light condition, which implies that the reflectance
of seagrass will not change with depth. Second, the green
biomass is positively correlated to the downwelling irradiance,
which implies that more light can support more green biomasses
(Neely, 1999). Since the location of the cited study is within
15 km of Egmont Key, genetic/biological differences due to the
geographical separation are minimized. Thus, we justify the
assumption that chlorophyll a content of H. wrightii in Egmont
Key does not change during depth or life stage. However, this
remains a possible source of undocumented error.

The dark seagrass area (blue) shown in Fig. 8 is a dense
seagrass bed that dwells on, and almost completely covers the
background sand. It also suggests that the seagrass is not covered
by sand. The bright seagrass (red) indicates the presence of a
relatively sparse seagrass bed. This may be new seagrass beds
emerging from sand or a more established bed that is partially
covered by suspended sand trapped by seagrass. Another pos-
sibility is that the habitant seagrass dies off. Any of these
introduce the existence of sand in the illuminated pixel and
increase the apparent reflectivity of seagrass.Without direct field
confirmation, the true situation cannot be identified. Since the
presence of seagrass within a pixel can be from zero to total
occupancy, the observed variation in apparent reflectance of the
seagrass is broad.

Using a subset of soundings that correspond to sand from
study site 3, the mean and standard deviations of the corrected
bottom return signal at each depth were calculated. The scatter
plot of sand in study site 3 is shown in Fig. 9. The dashed lines
represent one standard deviation from the center line in the
linear regression of the data and the square markers represent
the mean value of the standard deviation from the depth of 4 m
to 1.5 m at 0.5 m interval, up and down along the ordinate. The
data gap between the depth of ∼3 m to ∼3.5 m exists because,



Fig. 8. (a) Scatter plot of natural log of corrected bottom return versus water depth and (b) corresponding color-coded map of study site 3. The dashed box indicates the
samples of pure sand determined from the mission videotape.
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at these depths, the bottom is occupied by seagrass. The one
standard deviation band contains 77% of the data as opposed to
the value of 67% for a normal distribution function. This sug-
gests that, if the linear regression curve and averaged standard
deviation of one bottom material can be determined based on
information from other sources, one could reasonably divide the
scatter plot into regions representing different bottom types
based on the slope of the curve and a scale based on the variance
of the known bottom type.

Other, more subtle environmental factors may affect the
amplitude of the bottom return. Two subsets, sites 4 and 5, of
Egmont Key data (see Fig. 6) were selected for illustration. A
scatter plot and color-coded map of study site 4 are shown in
Fig. 10. The corresponding data for site 5 are shown in Fig. 11.
Sand is the only bottom material in both study sites. It is
Fig. 9. Scatter plot of natural log of corrected bottom return versus water depth
of data from a sand area in study site 3. Also shown is the best-fit regression line
(solid line) of the lidar data, the one standard deviation band (dash line), and the
mean value at 0.5 m interval (square mark).
assumed that the water surface and water clarity characteristics
are homogenous within each study site.

Depths at site 4 range from 2.75 m to 6 m, and form two
distinct clusters at greater depths. Red is assigned to the data
points with larger amplitude and green is assigned to those with
lower amplitude for depths greater than 3.8 m. As seen in
Fig. 10b, the red area is on the northern slope and the green area
is on the southern slope. A similar distribution appears in
shallower waters, with depths ranging from 3.25 m to 3.8 m. The
blue region, which has larger signal amplitude, is toward the
north and the magenta region, which has lower signal amplitude,
is toward the south. This means that sand on the north slope
consistently appears brighter than that on the southern slope.

A very similar pattern is observed in the data from study site
5. As at site 4, red is assigned to points with larger amplitudes;
green is assigned to those with lower amplitudes for depth
greater than 3.34 m. Blue is assigned to data points with larger
amplitudes; magenta is assigned to data points with lower
amplitudes from depth of 2.97 m to 3.34 m. The red and blue
points occupy the north region of the map, and the green and
magenta points occupy the south region (Fig. 11b). Again, the
sand appears brighter at the north of Egmont Key than at the
south end.

For either flightline, one could argue that the differences in
apparent reflectance could be a result in differences in bottom
slope, surface waves, or other factors. However, since data from
the two study sites are collected from two flightlines flown in
opposite directions, the directional effects, such as bottom
slope, surface wave, etc. are factored out as contributors to the
patterns in the scatterplot.

The contours shown in Fig. 6 indicate that the bottom slope
at the north is steeper than that at the south. This implies a more
dynamic water environment at the north and a relative calm
water environment at the south. Due to the relatively calm
environment at the south the reflectance of sand may be reduced



Fig. 10. (a) Scatter plot of natural log of corrected bottom return versus water depth and (b) corresponding color-coded map of study site 4.
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by scum, debris, or small patches of seagrass. In contrast, the
brighter reflectance of the sand on the north slope is consistent
with sand that is continually disturbed, mixed and washed by
the currents. A second possibility is that the surface of the
northern site is rougher, possibly due to the presence of sand
waves. There is some evidence that, for retro-reflectance, re-
flectance may increase with the roughness of the surface as
more surface facets become oriented toward the lidar (Clavano
& Philpot, 2004; Oren & Nayar, 1996; Wolff et al., 1998).
Either or both of these factors would also help to explain the fact
that the deviation at sites 1 and 2 (Fig. 7) are greater than that of
sand in site 3 (Fig. 9).
Fig. 11. (a) Scatter plot of natural log of corrected bottom return vers
3.2. Between-flightline variations

Like other airborne sensors, SHOALS collects data by flying
back and forth over the survey area. The flightlines are parallel to
each other and are offset by a few hundreds of meters. The exact
amount of the offset depends on the design of the mission. Two
adjacent flightlines overlap each other by at least a few meters to
ensure that there are no gaps in the survey area. This flying
pattern, coupled with the change in viewing orientation of the
lidar, means that there is a significant range of viewing directions
over a flightline and, where the flightlines overlap, the same
point on the water surface is viewed from different directions.
us water depth and (b) corresponding color-coded map of site 5.
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Three study sites are selected to examine the effect of op-
posite viewing directions: study sites 1, 2 and 6 in Egmont Key.
They are illustrated in Fig. 6 with study site 1 in water with
depths of 3 m to 7 m. Study site 6 is the closest to shore with the
depth of 2.5 m to 3.5 m. Study site 2 is at intermediate depths of
2.6 m to 4.5 m. For each study site data are included from the
overlapping edges of two flightlines oriented in opposite
directions, one flown toward the south and one flown toward
the north. The scatter plots and the best-fit lines of these data can
be seen in Fig. 12a, b and c. All three areas are selected to have
only sand within their coverage.

As shown in Fig. 12a (study site 6), the bottom return signal
inferred from the best-fit line of the southward flightline is
greater than that of the northward flightline at all depths. Due to
limited range of water depth and possible double focusing effect
of surface wave, the slopes of these two best-fit lines are
questionable. They are only the indication of the difference
between data collected from opposite flightlines for study site 6.
In Fig. 12b, scatter plot of study site 2, the bottom return signal
collected from the flightline flown toward south is noticeably
greater than that from the flightline toward the north. The trends
of the two data sets start to merge at depths greater than 4 m or
so. In Fig. 12c, the scatter plot of study site 1 shows clearly that
two data trends are merging from the depths of 3 m to 7 m. The
Fig. 12. Scatter plots of natural log of corrected bottom return versus water
depth: (a) site 6. (b) site 2, (c) site 1. Data from opposite flightlines are used. The
solid and dotted lines represent the best-fit line for the data from the flightlines
flown toward north (dots) and south (crosses), respectively.

Fig. 13. Comparisons of the refracted light rays of the same incident illumination
distribution entering an asymmetric wave traveling in opposite directions.
increased value and variation of bottom return signal at the
depth of 3.25 m and 4 m can be explained by the wave double
focusing effect as discussed in Section 3.1.

With the absence of wind direction and strength measure-
ments, we suspect that the trend discrepancy of bottom return
signals from adjacent flightlines with opposite directions at
shallow depth (b4 m for Egmont Key data set), which is
inferred from the best-fit lines, is due to an asymmetry induced
by the geometry of the water surface waves relative to the
incident direction of the lidar. Surface waves can alter the
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apparent return depending on their symmetry and orientation.
Both the wind strength and direction, and the geometry of the
ocean floor, can cause surface wave asymmetry. The incident
light field can then be distorted by an asymmetric wave as
shown in Fig. 13, which illustrates the refraction of 10 light rays
representing the light field of the laser. The wave shown in
Fig. 13 is a simplified schematic realization of an asymmetric
wave. The two waves have the same geometry except they are
horizontally reversed or equivalently, the same wave, surveyed
from opposite directions. As a result of wave double focusing,
the bottom return signal will be affected differently in each case.
As was seen with wave double focusing, when the water depth
increases, the effect of an asymmetric surface wave is lessened.

4. Summary and conclusions

Two corrections were applied to lidar data in order to correct
for effects introduced by bottom slope relative to the looking
angle of the lidar system. Both the amplitude and shape of the
recorded waveform are dependent on the slope of the bottom
relative to the lidar viewing angle. The results of an analytical
simulation of waveform distortion caused by bottom slope
(Steinvall & Koppari, 1996) were adopted to normalize the
signal to the value at nadir. The signal was then corrected for the
non-Lambertian directional reflectance (retro-reflectance) based
on results of a laboratory experiment conducted to normalize the
measured reflectance.

Beyond the slope corrections, there are several other factors
that complicate the discrimination of bottom types based on the
corrected amplitude of the bottom return. Since some of these
factors are sensitive to the direction of observation, we con-
sidered two situations separately, within-flightline variations and
between-flightline variations.

By exploring data within a specific flightline, the confusion
introduced by the orientation and asymmetry of water surface
waves can be excluded. In this case the signal is sensitive to a
variety of environmental conditions and geographic/geologic
characteristics that can result in misclassification of bottom
materials. The most typical problem is a “mixed pixel” problem.
The footprint of a single sounding may contain more than one
bottom type, e.g. seagrass and sand. The observed amplitude
can vary continuously from the reflectance of pure sand to a
dense seagrass canopy. It is also probably impossible to dis-
tinguish between a sparse, continuous seagrass bed and a group
of small dense patches of seagrass on a sand substrate when
both occupy the same percentage of area within the lidar foot-
print. This serves to emphasize that, at most, the bottom return
signal is a single-channel estimate of reflectance and that any
two bottom types with similar reflectance characteristics in that
one channel will be indistinguishable.

The presence of surface waves complicates the analysis via
wave double focusing effect. In theory, both the amplitude and
variance of the bottom return signal will be exaggerated due to
focusing by the waves (Abrosimov & Luchinin, 1999; Luchinin,
1987;McLean& Freeman, 1996). (Only the increase in variance
was apparent in our data.) The effect reaches its maximum at the
depth where downwelling light is most strongly focused and is
dependent on the dominant slope spectrum of the surface waves.
The variance becomes less when water depth increases and
becomes constant at depths where the light is well scattered.

The asymmetry of the surface waves also plays an important
role affecting the return signal. It distorts the signal by altering
the downwelling light field complicating the comparison of
bottom return signals from two different flightlines. Like the
wave double focusing effects, the asymmetry effects are less
pronounced in strongly scattering environments making the
effect less important in turbid waters or at greater depths
(Fig. 12).

Although average wave height information can be extracted
from lidar data, the wavelength and curvature are not available
at the scale that is significant for the wave focusing effect.

Regardless of these complicating factors, we showed that
with limited knowledge of the in-situ data, in our case, a nadir
viewing videotape recorded simultaneously with the lidar survey
mission, the lidar data can correctly produce a map of sand,
continuous/dense seagrass, and discontinuous/sparse seagrass
(Fig. 8). Knowledge of the spatial distribution of these bottom
types can further facilitate fishery habitat management (von
Szalay & McConnaughey, 2002) or monitoring the spatial
distribution of sediment (Wright et al., 1997).

Currently the intent is to make maximum use of existing lidar
bathymetry data to discriminate among bottom types based only
on the amplitude of the bottom return. The following recom-
mendations address the issue of creating a bottom map of a
survey area, across several flightlines.

1) Compute the bottom slope for each lidar sounding.
2) Correct the bottom return signal for pulse-stretching effects

due to the bottom slope.
3) Correct the bottom return signal for the retro-reflectance due

to the bottom slope.
4) Use the dominant material within each flightline as a baseline.

The assumption here is that, if the water clarity is invariant
over the flightline, the samples for the dominant material will
form a linear feature in the natural log of bottom signal versus
depth scatter plot. This will provide a baseline and an estimate
of the local variance that can be used to estimate when a
significant change in reflectance has occurred.

5) Use the mean and variance of the dominant material to
characterize changes in reflectance. For each flightline,
identify a linear feature in the scatter plot, which represents
the combined attenuation of water and lidar optics for a
constant bottom type. Obtain the slope of the linear feature
by simple linear regression and use the slope to normalize
every bottom return signal to the same depth, for example
depth just below the water. Iterate the same process in other
flightlines and make the values at the overlap area match. If
the double focusing effect is not negligible, the classification
may be in error at shallower depths.
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